姓名:杨娜
职称:教授
国家“优青”,天津市“杰青”,我校百名青年学科带头人
学科方向:结构药理学,表观遗传学
研究方向:表观遗传相关药物靶点的结构功能研究及候选化合物的设计与筛选
通讯地址:5357cc拉斯维加斯,天津市津南区海河教育园同砚路38号,300350
电子邮件:yangnaNKU@nankai.edu.cn
教师简介:
教育经历:
1996-2000北京大学生命科学学院,本科
2000-2005中国科学院生物物理研究所,博士
工作经历:
2005-2006中国科学院生物物理研究所,研究助理
2006-2008北京大学,博士后
2008-2013中国科学院生物物理研究所,副研究员
2013.12-2017.04中国科学院生物物理研究所,研究员
2015.10-2017.04中国科学院大学,教授、博导
2017.04-今5357cc拉斯维加斯,药物化学生物学全国重点实验室,教授、博导
个人专长:
表观遗传是指DNA序列未发生变异、而性状发生可遗传变化的现象。多种经典表观遗传现象均由染色质修饰决定,包括DNA的甲基化修饰和组蛋白上的多种修饰,这些修饰可引起染色质结构的动态变化,进而影响基因转录。表观遗传修饰对基因转录的调控与许多重要的生命过程密切相关,如个体分化发育、细胞命运决定、肿瘤发生发展等。国际上以表观遗传调控因子为靶标的抗肿瘤药物研发方兴未艾。
杨娜课题组多年从事基因表达调控的结构生物学研究。针对新型组蛋白修饰酶复合体、DNA甲基化因子以及RNA结合蛋白开展了酶活性调控、底物和识别特异性的结构机理研究,以期阐明这些表观遗传修饰建立、解读和调控下游基因表达,影响生物发育、引发疾病的分子机制。当前研究主要围绕与疾病密切相关的表观遗传因子进行药物靶点论证工作,建立它们和重要疾病特别是肿瘤之间的关联;测定它们的三维结构,并开展基于结构的药物设计研究;开展候选化合物的发现、优化以及药物筛选体系的建立以及评价工作。
从事研究工作以来,在Science, Cell, Nature Struct Mol Biol, PNAS, Genes & Development, Science Advances, Nucleic Acid Research等国际知名刊物共发表SCI科学论文55篇。撰写了英国Elsevier出版社《Handbook of Proteolytic Enzymes》书中的1章,撰写了科学出版社科普读物《承续的魅力-令人着迷的表观遗传学》书中的1章,合作翻译了科学出版社《现代蛋白质工程实验指南》一书。近年承担的国家级科研项目包括:国家重点研发计划课题负责人,国家自然科学基金优青项目、面上项目负责人(3项),国家自然科学基金创新群体项目、重点项目主要参与者等。
近年获得的科研奖励包括:第十五届天津青年科技奖(2019)、天津市引进领军人才创新类(2019)、北京市科学技术奖二等奖(2018, 第五完成人)、天津市首届杰出青年科学基金(2017)、国家优秀青年科学基金(2016)、中国科学院青年创新促进会优秀会员(2015)、中国科学院卢嘉锡青年人才奖(2011)等。国内外重要学术组织任职包括:国际晶体学联合会(IUCr)大分子专业委员会顾问委员(2014-2023)、中国生物物理学会分子生物物理分会副理事长(2021-)、中国晶体学会六届理事会理事(2016-2021)、中国细胞生物学学会染色质生物学分会委员(2017-2023)、中国遗传学会表观遗传学分会委员(2019-)等。
代表性论文:
1. Shi, F.D., Zhang, K., Cheng, Q.X., Che, S.Y., Zhi, S.X., Yu, Z.Y., Liu, F., Duan, F.F., Wang, Y.M.* and Yang, N.* (2023) Molecular mechanism governing RNA-binding property of mammalian TRIM71 protein. Science Bulletin, published online Nov 21, 2023.
2. Yang, N.* and Yu, Z.Y. (2023) Unraveling the mechanism of de novo nucleosome assembly. Science Bulletin, published online Nov. 16, 2023.
3. Liu, F., Wang, J.*, Xu, R.M.* and Yang, N.* (2023) Energy landscape quantifications of histone H3.3 recognition by chaperon DAXX reveal an uncoupled binding specificity and affinity. Physical Chemistry Chemical Physics, Vol. 25, 27981–27993.
4. Liu, C.P.#, Yu, Z.#, Xiong, J.#, Hu, J.#, Song, A.#, Ding, D., Yu, C., Yang, N., Wang, M., Yu, J., Hou, P., Zeng, K., Li, Z., Zhang, Z., Zhang, X., Li, W., Zhang, Z., Zhu, B.*, Li, G.* and Xu, R.M.* (2023) Structural insights into histone binding and nucleosome assembly by chromatin assembly factor-1. Science, Vol. 381, eadd8673.
5. Liu, F.#, Pang, N.N.#, Xu, R.M. and Yang, N.* (2023) Mechanism and design of allosteric activators of SIRT1. Protein & Cell, Vol. 14, 387-392.
6. Sun, J.X., Liu, F., Yuan, L.X., Pang, N.N., Zhu, B. and Yang, N.* (2023) Mechanism studies of the activation of DNA methyltransferase DNMT1 triggered by histone H3 ubiquitination, revealed by multi-scale molecular dynamics simulations. Science China Life Sciences, Vol. 66, 313-323.
7. Pang, N.N.#, Sun, J.X.#, Che, S.Y. and Yang, N.* (2022) Structural study of fungus-specific histone deacetylase Hos3 and insight into developing selective inhibitors with antifungal activity. Journal of Biological Chemistry, Vol. 298, 102068.
8. Ma, S.#, Zhang, J.Y.#, Guo, Q.S., Cao, C., Bao, K.W., Liu, L., Chen, D.G., Liu, Z., Yang, J., Yang, N.*, Yao, Z.* and Shi, L.* (2022) Disrupting PHF8-TOPBP1 connection elicits a breast tumor-specific vulnerability to chemotherapeutics. Cancer Letters, Vol. 530, 29-44.
9. Ma, S.#, Cao, C.#, Che, S.Y.#, Wang, Y.J.#, Su, D.X.#, et al., Yao, Z.*, Yang, N.* and Shi, L.* (2021) PHF8-promoted TOPBP1 demethylation drives ATR activation and preserves genome stability. Science Advances, Vol. 7, eabf7684.
10. Xu, X.#, Wang, M.Z.#, Sun, J.X.#, Yu, Z.Y.#, Li, G.H., Yang, N.* and Xu, R.M.* (2021) Structure specific DNA recognition by the SLX1-SLX4 endonuclease complex. Nucleic Acid Research, Vol. 49, 7740-7752.
11. Sun, J.X.#, Li, Z.B#. and Yang, N.* (2021) Mechanism of the conformational change of the protein methyltransferase SMYD3: a molecular dynamics simulation study. International Journal of Molecular Sciences, Vol. 22, 7185 (1-21).
12. Liu, F. and Yang, N.* (2020) Multiscale landscape of molecular mechanism of SIRT1 activation by STACs. Physical Chemistry Chemical Physics, Vol. 22, 826-837.
13. Song, X.S.#, Yang, L.L.#, Wang, M.Z., Gu, Y., Ye, B.Q., Fan, Z.S., Xu, R.M.* and Yang, N.* (2019) A higher-order configuration of the heterodimeric DOT1L-AF10 coiled-coil domains potentiates their leukemogenenic activity. Proc. Natl. Acad. Sci. USA, Vol. 116, 19917-19923.
14. Sun, J.X., Shi, F.D. and Yang, N.* (2019) Exploration of the substrate preference of lysine methyltransferase SMYD3 by molecular dynamics simulations. ACS Omega, Vol. 4, 19573-19581.
15. Li, Y.#, Duan, F.F.#, Zhao, Y.T., Gu, K.L., Liao, L.Q., Su, H.B., Hao, J., Zhang, K., Yang, N. and Wang Y.M.* (2019) A TRIM71 binding long noncoding RNA Trincr1 represses FGF/ERK signaling in embryonic stem cells. Nature Communications, Vol. 10, 1368.
16. Zhang, L.#, Serra-Cardona, A.#, Zhou, H., Wang, N., Yang, N., Zhang, Z.* and Xu, R.M.* (2018) Multisite substrate recognition in Asf1-dependent acetylation of histone H3 K56 by Rtt109. Cell, Vol. 174, 818-830.
17. Fu, W.Q.#, Liu, N.#, Qiao, Q.#, Wang, M., Min, J.R., Zhu, B.*, Xu, R.M.* and Yang, N.* (2016) Structural Basis for Substrate Preference of SMYD3, A SET Domain-containing Protein Lysine Methyltransferase. Journal of Biological Chemistry, Vol. 291, 9173-9180.
18. Fang, D.#, Gan, H.#, Lee, J.H.#, Han, J.#, Wang, Z.#, Riester, S.M., Jin, L., Chen, J., Zhou, H., Wang, J., Zhang, H., Yang, N., Bradley, E.W., Ho, T.H., Rubin, B.P., Bridge, J.A., Thibodeau, S.N., Ordog, T., Chen, Y., van Wijnen, A.J., Oliveira, A.M., Xu, R.M., Westendorf, J.J. and Zhang, Z.* (2016) The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science, Vol. 29, 1316-1325.
19. Cao, D.F., Wang, M., Qiu, X.Y., Liu, D.X., Jiang, H.L., Yang, N.* and Xu, R.M.* (2015) Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes & Development, Vol. 29, 1316-1325.
20. Yang, D.X.#, Fang, Q.L.#, Wang, M.#, Ren, R., Wang, H., He, M., Sun, Y.W., Yang, N.* and Xu, R.M.* (2013) Nα-acetylated Sir3 stabilizes the conformation of a nucleosome-binding loop in the BAH domain. Nature Structural & Molecular Biology, Vol. 20, 1116-1118.